discontinuous conductions. Make the conduction of various thyristor also.

(c) Show that the fundamental rms value of per-phase output voltage of low-frequency for an m-pulse cycloconverter is given by

$$V_{ov} = V_{ph} \left(\frac{m}{\pi}\right) \sin\left(\frac{\pi}{m}\right).$$

Also express V_{ov} in terms of voltage reduction factor.

- 5. Attempt any two parts :— (10×2=20)
 - (a) Describe the operation of a 1-φ full bridge inverter.

 Draw waveshapes of output current when:
 - (i) load is pure resistive.
 - (ii) load is pure inductive.
 - (iii) load is R-L-C underdamped.
 - (b) Differentiate between the working of voltage source and current source inverters. Explain the working of a 1-\$\phi\$ series inverter.
 - (c) The 1-φ quasi-square wave bridge inverter operates from a DC supply of 200 V at a frequency of 100 Hz and feeds a resistive load of 10 Ω. Calculate
 - (i) Duration of ON period if the rms value of the load voltage is 100 V
 - (ii) Peak supply current
 - (iii) Average (DC) supply current.

(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 2499	Roll No.										

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12

POWER ELECTRONICS

Time: 3 Hours

Total Marks: 100

Note:—(1) Attempt all questions.

- (2) All questions carry equal marks.
- 1. Attempt any four parts:— (5×4=20)
 - (a) What are the characteristics of an ideal power-switching device? Compare switching characteristics of MOSFET and IGBT.
 - (b) Define $\frac{di}{dt}$ and $\frac{dv}{dt}$ ratings of SCR. How is SCR protected against abnormal conditions?
 - (c) Draw the static V-I characteristics of SCR and explain its modes of operation.
 - (d) Explain the significance of latching and holding current.
 - (e) A dc supply of 100 V feeds a load resistance of 10 Ω and an inductance of 5 H through a thyristor. The latching current of thyristor is 50 mA. Find the minimum width of the gate pulse.

- (f) Find the number of thyristors each with a rating of 500 V & 75 A required for each branch of a series parallel combination for a circuit for a total voltage and current rating of 7.5 kV and 1 kA. Assume derating factor of 14%.
- 2. Attempt any two parts :— $(10\times2=20)$
 - (a) Why does unequal voltage sharing take place among series connected thyristors during steady state and dynamic state? How is equal voltage sharing obtained in both the states?
 - (b) What do you understand by chopper? Describe the various types of chopper configurations with appropriate diagram.
 - (c) For the ckt shown in Figure below the operating frequency is 2 kHz and the required $\frac{dv}{dt}$ is 100 V/ μ m. If the discharge current be limited to 100 A, then calculate:
 - (i) the value of R_s and C_s .
 - (ii) the power loss in the snubber.

Figure

3. Attempt any two parts:

- $(10 \times 2 = 20)$
- (a) Discuss the working of 1-φ full wave ac-dc converter taking into account the effect of source inductance. Draw the output voltage waveform for firing angle of 30°.
- (b) What do you understand by dual converters? Explain the operation of a 3-φ dual converter usign circulating current mode of operation. How are firing angles of two converters controlled?
- (c) A single-phase full converter operates with 220 V, 50 Hz ac input and supplies output load consisting of R-L load with very high inductance drawing level load current 10 A and operated at firing angle of 30°. Find:
 - (i) RMS supply current
 - (ii) Fundamental component of input current
 - (iii) Input displacement factor
 - (iv) Harmonic factor
 - (v) Power factor.
- 4. Attempt any two parts :— $(10\times2=20)$
 - (a) Describe 1-φ ac voltage controller with inductive and resistive loads. Describe an expression for output voltage.
 - (b) Describe the basic principle of working of 1-φ to 1-φ step-down cycloconverter for both continuous and